
lnt. J. Heat Mass Transfer. Vol. 20, pp. 919-926. Pergamon Press 1977. Printed in Great Britain 
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Abstract--Convective heat transfer through porous insulation in a vertical slot is examined analytically. 
A simple analytical formula for calculating the heat transfer is presented, after obtaining a matching 
coefficient by comparison with numerical solutions. Both free and forced convection, simulating wall 
leakage in common building structures, are considered. Numerical results for the case of no wall leakage 
are in good agreement with those presently available. It is shown that, for appreciable wall leakage, 
the dominant mode of heat transfer is due to the enthalpy change of the transferred fluid as it is blown 

through the enclosure. 

NOMENCLATURE 

A, aspect ratio, L/d: 
d, horizontal distance between the hot and cold 

walls [m]; 
9, acceleration of gravity [m/s 2] : 
Kx, horizontal permeability [m2]; 
Kr, vertical permeability IMP]: 
L, vertical distance between the horizontal 

walls [m]; 
M, number of grid spaces in the horizontal 

direction: 
n, non-dimensional coordinate normal to the 

boundary: 
N, number of grid spaces in the vertical 

direction; 
No, grid point about which the suction velocity 

is centered; 
Nr,  number of vertical temperature differences 

defined in equation (28): 
Nu, Nusselt number defined in equation (7) or (8): 
p, pressure [N/m E] ; 
Qc, non-dimensional heat transfer in the vertical 

direction defined in equation (20): 
Rr, ratio of permeabilities, Kr/K ~: 
Ra, modified Rayleigh number defined in 

equation (9): 
Res, criterion for numerical convergence in 

equation (27): 
Th, hot boundary temperature [K];  
Tho, hot boundary temperature at y = 0 [K];  
Tco, cold boundary temperature at y = 0 [K];  
AT, temperature difference at y = 0, 

(~ ,o-  ~o)[K];  
/~, horizontal velocity [m/s]: 
u, non-dimensional horizontal velocity, f~d/~: 
Uw, non-dimensional horizontal blowing or 

suction velocity, u (x = 0, 1: y): 
?, vertical velocity [m/s]; 
v, non-dimensional vertical velocity, ~d/~: 

Vw, non-dimensional vertical blowing or suction 
velocity, v (x; 3' = 0, A): 

.~, horizontal length coordinate [m]; 
x, non-dimensional horizontal length 

coordinate, ~/d; 
~, vertical length coordinate [m] : 
y, non-dimensional vertical length coordinate, 

;/d. 

Greek symbols 

~, thermal diffusivity [m2/s]; 
13, coefficient of cubical expansion [ I /K];  
7, the fraction of the heat convected vertically 

that contributes to the Nusselt number as in 
equation (20); 

0, non-dimensional temperature difference, 
( T -  T~o)/(Tho - T~o); 

v, kinematic viscosity [m2/s]; 
p, density of the fluid [kg/m3]; 
Pro, mean density of the fluid in the enclosure 

[kg/m 3] ; 
r, any non-dimensional numerical variable, 

either q~ or u/, associated with equation (27); 
~b, non-dimensional perturbation temperature 

defined in equation (26); 
~t ' ,  non-dimensional stream function, 

8~ 8tP 
u = ~ and r = - d-~" 

INTRODUCTION 

THE FACT that fibrous materials are used as a universal 
building insulator, renders them worthy of substantial 
evaluation. Even a slight improvement in the thermal 
effectiveness would exert a tremendous impact on over- 
all energy consumption. Attention in this work is con- 
centrated upon convective heat transfer through build- 
ing insulation, although radiative heat transfer may 
also contribute to the total energy transport [1-3]. 
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Both free and forced convection are important modes 
of heat transfer in ordinary building structure insu- 
lation. A two-dimensional vertical slot is taken as a 
basis for consideration, yielding results of fundamental 
as well as practical interest. 

Recently, the subject of heat transfer in fiber insu- 
lations has received considerable attention. Free con- 
vection in insulation-filled enclosures has been the 
object of particular interest. While experimental results 
are available for a variety of configurations and in- 
sulation materials [4-9],  there have also been several 
analytical studies [4, 6-8, 10, 11]. Bankvall [7] has 
been prolific in this area, and has presented a very 
complete literature survey. 

Existing analytical studies are concerned primarily 
with very idealized physical systems, such as isothermal, 
impermeable boundaries, isotropic porous materials, 
etc. The present study was initiated to obtain realistic 
quantitative information and trends concerning con- 
vection phenomena in vertical insulation-filled slots as 
existing in building structures. The results will be of 
great practical importance to the building industry. 
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8d/ct, gd/ct, and ( T -  T~o)/(Ta o - T~o) to yield the un-barred 
quantities, x, y, u, v and 0, respectively. After invoking 
the Boussinesq approximation, introducing the stream 
function, and cross-differentiating the momentum 
equations to eliminate the pressure terms, the follow- 
ing equations, in non-dimensional variables, are 
obtained: 

, ~ - Ra {5) 
c?x- Kx Oy 2 ¢'x 

(?t[,I ~,0 C31Yk I 8 0  (720 ?'20 
. . . . . . . . . . . .  -z-- + _~. (6} 
&" Ox ?,x 8y cx" c: -  

The associated boundary conditions are: 

(boundaries): specified 

80 
0 or ; -  (boundaries) : speofied. 

O/l 

F O R M U L A T I O N  O F  T H E  P R O B L E M  

Based on Darcy's law which is valid for the Reynolds 
number based on pore diameter being less than one, 
the governing differential equations are, in dimensional 
form [12]: 

8(p~) O(pr) 
+-~_-c- = 0 (1) 

/?i: c V 

Kx 8p 
it (2) 

P ~ y + g ( p - p . , )  (3) 

8T  8 T  82T 82T1 
i i - - + / :  (~- = a 0.£ .V ~ + V ] "  (4) 

The enclosure, shown in Fig. 1, is of height L and 
width d. The variables X, .~, /i, ~ and T in equations 
(1)-(4) are non-dimensionalized as follows: .~/d, ~/d, 

Hot - z ~  
B~andory 

, \# , 

(×=O,y=O) × 

~ (x=l. y=.¢} 

, , ~ Cold 
Boundary 
8=O 

", ? \  / ~4 
Permeable I 
Materiel 

t::lG. 1. Two-dimensional porous insulation-filled enclosure. 

The boundary conditions to be considered for equa- 
tion (5) are: all boundaries impermeable resulting in 
a zero normal velocity at all walls, horizontal bound- 
aries impermeable but the vertical boundaries are 
uniformly permeable yielding a uniform horizontal 
normal velocity at the walls: and horizontal boundaries 
impermeable but the vertical boundaries are locally 
permeable resulting in discrete mass injection (model- 
ing the leakage due to cracks in the building structure 
walls). 

The horizontal boundary conditions to be considered 
for equation (6) are: insulating boundaries, or perfectly 
conducting boundaries. The vertical boundary condi- 
tions are: isothermal walls, or non-isothermal walls. 
The only non-isothermal case to be discussed is a linear 
increase with height of the hot-boundary temperature. 
The left wall is the hot wall and acts as a source for 
induced motion. 

The overall heat transfer is best characterized by the 
average Nusselt number for each wall of the enclosure, 
defined as follows: 

Nu = -A- U,,O - ~. dv (7) 

for the vertical walls [all of the Nusselt numbers 
reported herein are defined by equation (7)], or 

N u =  V w O - 7 , ] d x  t8) 
\ 

for the horizontal walls. For no blowing, the Nusselt 
number reduces to an average non-dimensional tern- 
temperature gradient at the wall, with a lower bound 
of one when conduction is the only mode of heat 
transport, and the vertical boundaries are isothermal. 

The strength of convection is seen from equation (5) 
to be dependent upon the modified Rayleigh number, 
Ra. Explicitly, 

gfl(Tho -- T~o) dK,, 
Ra - (9) 

V0{ 

For the onset of convection in vertical enclosures, a 
criterion of Ra = 4A was suggested [5], but this is not 
conclusively supported by experimental evidence. For 
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typical building insulation problems, Ra ~< 100. The 
permeability in the vertical direction, K ,  has been 
incorporated in the modified Rayleigh number as being 
more inductive of the flow for the large aspect ratios 
of current interest. For typical fibrous insulations, 
10- lo m z < Kr < 5 x 10- s m 2. Equation (9) implies 
that, for high aspect ratios, the fibers should be oriented 
perpendicular to the direction of the bulk flow so that 
the lower value of permeability will retard the flow to 
a greater extent. This is not generally done in present 
building structures. Fournier and Klarsfeld [5] indicate 
a typical value of two for the ratio of permeabilities, 
Rx = Kr/K~,, so the fiber planes should be rotated 90 ° 
to effectively utilize this difference. Wall leakage would 
decrease the utility of such a rotation. 

The entire heat transfer through the porous in- 
sulation-filled enclosure may be characterized par- 
ametrically as: 

Nu = Nu(Ra, A, Rx). (10) 

In general, Nu falls in the range of one to ten, and 
increases with the increase of Ra and the decrease of 
Rx. The dependence on A, however, is rather compli- 
cated. 

ASYMPTOTIC SOLUTIONS FOR LARGE 
ASPECT RATIOS 

A solution is sought that will indicate the effect of 
wall injection on the heat transfer phenomena in 
insulation-filled enclosures for large aspect ratios. It is 
reasonable to determine the solution for a fully 
developed flow in the vertical direction, which is the 
asymptotic case for large aspect ratios. A very approxi- 
mate analysis similar to that of Batchelor [13] deter- 
mines the range of validity of the asymptotic assump- 
tion to be A > 0.1Ra. Under this assumption, the 
equations reduce to: 

Continuity: ~x = 0 (11) 

dv dO 
Momentum: dxx = Ra dx (12) 

dO dE0 
Energy: u d x -  dx 2 (13) 

with the associated boundary conditions: 

u (x = 0:1 : y) = U~ = constant (14) 

f oVdX  = (15) 0 

0(x = 0,y) = 1; O ( x = l , y ) = O .  (16) 

Solutions of the equations under these restrictions are: 

u = U~ (17) 

( e  vwx 1 ] 
v = Ra[. 1--~ffZ + ~ j (18) 

eO~X_eV~ 
0 1 - e  vw " (19) 

Following Batchelor [13], it is reasoned that the heat 
convected in the vertical direction should influence the 
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overall heat transfer by a factor, 7, such that the 
influence upon the Nusselt number of the heat con- 
vected vertically is: 

fl 7Qcy = y vO dx. (20) 
o 

The factor, y, is strictly dependent upon A, Ra and Uw, 
but may be taken as constant for the present range of 
these parameters. 

This approach is expected to more closely model the 
enclosure with insulating horizontal boundaries than 
the one with perfectly conducting horizontal bound- 
aries. The total heat transfer is due, then, to the heat 
conducted and convected in the horizontal direction, 
and the transport of heat in the upper and lower end 
regions due to the turning motion of the fluid traveling 
vertically which is given to within a factor by equation 
(20). The total Nusselt number may then be approxi- 
mately given by: 

e vw I l + e  vw 1 ] 

Nu = U~,eV-OS~_l + yRal2uw(eV~_l  ) u2j"  (21) 

For the case of no blowing at the wall, equations 
(17)-(19), and (21 ), reduce to the following, respectively: 

u = 0 (22) 

Ra 
v = ~ -  (1 - 2x) (23) 

0 = 1 - x  (24) 

Ra 
Nu = 1 +;~ 1-2' (25) 

Equations (21) and (25) indicate that, under the above 
assumptions, the average heat transfer is linearly depen- 
dent upon the modified Rayleigh number with the wall 
injection velocity, Uw, as a parameter. This result is 
substantiated by numerical computations, which indi- 
cate that the dependence is indeed a linear one for 
insulating horizontal boundaries and is at least 
approximately true for perfectly conducting horizontal 
boundaries. 

Figure 2 depicts the variation of the Nusselt number 
with the wall injection velocity for modified Rayleigh 
numbers of 50 and 100. The horizontal boundaries are 
insulating. The discrete points are obtained by numeri- 
cal calculation. The curves are graphical represen- 
tations of equation (21) with a value of 0.055 for 7, 
obtained by fitting the curves to the discrete points. 
Agreement is excellent for positive values of Uw, but 
the curves tend to diverge from the points for large 
negative values of the abscissa. The asymptotic limit 
of the total heat transfer due to horizontal convection 
is shown. This limit is closely approached for values 
of Uw greater than 10 for the present range of Rayleigh 
numbers. Since all velocities are non-dimensionalized 
with respect to o~/d, a typical value for which is about 
2 × lO-4m/s, the blowing is seen to exert an immense 
effect upon the total heat transfer. Physically, this is 
to be expected because typical free convection velocities 
are so small. Although a two-dimensional model for 
wall leakage is not physically realistic, the tremendous 
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Io I I I I Nusselt number did not change by more than 2%, this 
Theoretical Numericol . I T  was judged to be of sufficient accuracy such that the 

Results Ro Results . f  
~ ~ / H  grid size need be reduced no further. This is not 

8 - - - ' - -  Ioo • .v, / -~ necessarily an adequate criterion for the convergence 
J / .  of the temperature and stream-function fields. 

A = I o .7/ Changes in the perturbation temperature of up to 207~ 
6 NT= 0 .,__/~" were observed when the Nusselt number changed by 

RK= I ,~/~7""--, about 5/..o. A four-point, one-sided difference was 
utilized in calculating the temperature gradient at  the 

Nu / f i / / ~  ~u-- uw / wall. The grid geometry is shown in Fig. 3. 

4 " " ( /  t g (I, N÷I) (2,N*I) (M,N+I) IM~'I, N÷I) 

2 
o / '  

i f l ,N) -  I - - (M* I ,N)  

o~ . . . . .  ~ i J 1 - - - 4  - 

Uw __L . . . .  i - - _ ]  

Fho. 2. Variation of the Nusselt number with the wall i i 
injection velocity. I . . . .  _ ~ .  ! - 

i i 

impact of small leakage velocities has been illustrated. - I ] i - 
i 

A uniform mass injection velocity over the entire cross- 

i i section is also not of practical interest. But, as a good - ~ 4 -  -: - 
, J 

first approximation, the heat transfer may be calculated 
as the enthalpy difference of the air on a mass flow - - - '  - i 
basis, and the enhancement due to free convection may ~ ~ , 

be added separately. --  . . . . .  t i - - 

! 

N U M E R I C A L  RESULTS AND DISCUSSION - -- 

Equations (5) and (6) were put into a non- 
conservative central-difference form [14] and solved . . . .  ~ - 
employing relaxation methods either on a C D C  6400 " 
or a CDC7600 computer. Instead of solving for the f l , Z ) -  J i - - ( M + I , 2 )  
non-dimensional temperature, O, the non-dimensional I 
perturbation temperature due to convective motion, - - 

given by: IL l )  (2,0 (M,I) (M+I, I )  

4~ = 0 -  (1 - x )  (26) thG. 3. Grid geome~r2, 

was solved for. This represents a more stringent 
criterion for convergence as well as decreasing the For the cases with a high aspecl ratio and ordinary 
total number of iterations to achieve convergence, boundary conditions (i.e. no blowing, suction, or 

The criterion set for convergence was: boundary temperature gradients), a grid of 8 x 16 
yielded sufficient accuracy. When the blowing and 

"( %~,~,- r ol,j) <~ Res (27) suction were uniform along the vertical walls, the grid 
\ told ~m,x was increased to 16 x 24, and when the blowing or 

where z refers to q5 or W, Res is a prescribed residue suction occurred over discrete areas of the vertical 
constant, and the subscript, max, denotes that the value walls, a grid of 16 x 32 yielded sufficiently accurate 
in the parentheses is the maximum over all the grid results. A grid of 24 x 64 was run for a case where the 
points for both the energy and stream-function equa- stability criterion [14] for the energy equation was 
tions. An acceptable value for Res was determined to violated in a few places. A negligible effect was observed. 
be 0.005 when the Nusselt number, defined by equation Results are judged to be accurate to 5°o,. For  vertical 
(7), did not change appreciably as Res was decreased temperature gradients on the hot boundary, a grid of 
to 0.001 and 0.0005. All of the numerical examples 16 x 32 was employed, yielding results judged to be 
considered hereinafter are for insulating horizontal accurate to only about 15%. For low aspect ratios, 
boundaries, grids of at least 16 x 16 were necessary. Table 1 presents 

For  the high aspect ratios considered, a grid (M x N) some average .values for the computer time used for 
of 8 x 16 was initially used. The grid spacing was different grids and numbers of iterations. 
reduced, on a step-by-step basis, to 16 x 16, 16 x 24 The variation of the Nusselt number with the aspect 
and 16 x 32. When the grid size was reduced, if the ratio is shown in Fig. 4 for Rayleigh numbers of 50 
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Table 1. Computer time used for calculations 
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Computer 
No wall leakage Uniform wall leakage 

Grid Time Iter. Grid Time lter. 
(M x N) (s) (M x N) (s) 

Discrete wall leakage 
Grid Time Iter. 

(M x N) (s) 

CDC 6400 8 × 16 10 151 8 × 16 4 48 8 × 16 6 102 
CDC 6400 16 × 24 35 186 
CDC 6400 16 × 32 42 174 16 × 32 60 286 
CDC 7600 16 × 32 5 325 

Table 2. Numerical and asymptotic solutions for A = 10, Ra = 50 and no wall injection 

y/A = 0.250 y/A = 0.375 y/A = 0.500 

u 2: 0 u v 0 u r 0 

Asymptotic solution 

U U 0 

0 0 25.9 1 0 25.1 1 0 25.0 1 
0.250 0.03 12.0 0.721 0.01 12.4 0.745 0.01 12.5 0.750 
0.500 -0.19 -4.79 0.472 -0.03 -0.07 0.496 0 0 0.500 
0.750 -0.23 -12.2 0.236 -0.04 - 12.5 0.248 0.01 -12.5 0.250 

1 0 - 24.0 0 0 - 24.8 0 0 - 24.9 0 

0 25.0 1 
0 12.5 0.750 
0 0 0.500 
0 -12.5 0.250 
0 -25.0 0 

5.0 I I I I 

l ~  Present Bonkvoll's 
Work Ro R e s u l t s  

50 • 
4.0 . . . .  I00  o 

l RK = I 
I NT=O t 

3.0 \ 

Nu 
. o ~ 

2.0 

1.0 

I I I I 
O0 IO 20 30 4 0  50 

A 

FIG. 4. Variation of the Nusselt number with the aspect 
ratio for impermeable vertical boundaries. 

and 100. The discrete values are obtained from Bankvall 
[7] for purposes of comparison. Agreement is to within 
5~o for the entire domain  of aspect ratios. For  large 
aspect ratios, small horizontal  temperature  gradients 
exist on  the upper  region of the hot wall and the lower 
region of the cold wall, resulting in a decreased Nusselt 
number.  For  small aspect ratios, the fluid encounters 
much  more  flow resistance in the horizontal  direction 
due to the increased path length. Thus, the curves 
undergo a maximum value near the aspect rat io of 
one. 

Shown in Table 2 are some typical temperature  and 
velocity values for an  aspect rat io of ten. All of the 
profiles are anti-symmetric with respect to the center- 
point of the enclosure. The validity of the asymptotic 
solution is somewhat  substant iated by the fact that  the 

I0 l t I r 

Ro =50 
RK= I 

8 

6 A =  5 , /  

Nu .- / / , i  
1 t I O ~  

0 I I I I 
0 0.5 1.0 1.5 2.0 2.5 

bl T 

FrG. 5. Variation of the Nusselt number with the number 
of hot-boundary vertical temperature differences for no wall 

injection. 

values obtained by numerical  calculation do not differ 
greatly from the values obtained from the asymptotic 
solution, equations (22)-(24), except near  the end 
regions, where the fluid undergoes a gross change in 
direction. 

Figure 5 depicts the variat ion of the Nusselt number  
with Nr ,  the number  of horizontal  temperature  differ- 
ences at y =  0 which the hot boundary  undergoes, 
defined by: 

N r  
0 (x = 0, y) = --A-- y +  1.0. (28) 

The aspect ratio is a parameter,  taking values of 5 
and 10. The cold boundary  is isothermal. A dramat ic  
effect is observed due to the el imination of the small 
horizontal  temperature gradients on the upper region 
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Table 3. Variation of the Nusselt number with the ratio of permeabilities 
for A = 10, Ra = 50 and no wall injection 

RK 0.1 0.5 1,0 2.0 5.0 7.5 10.0 

Nu 1.29 1.28 1.27 1.25 1.22 1.20 I. 18 

Table 4. Numerical and asymptotic solutions lot A ~ 10, Ra = 50 and U,,. = 5 

y/A = 0.250 v/A = 0.375 v/A = 0.500 Asymptotic solution 
X: 

u I 0 u l 0 u ~ 0 u ~" O 

0 5 9.91 1 5 9.78 1 5 9.77 1 5 9.66 1 
0.250 5.05 8.92 0.981 5.00 8.90 0.983 5.00 8.89 0.983 5 8.82 0.983 
0.500 5.03 5.81 0.920 5.00 5.89 0.924 5.00 5.89 0.924 5 5.87 0.924 
0.750 4.99 -4.50 0,716 5.00 -4.46 0.719 5.00 -4.45 0.719 5 -4.42 0.718 

l 5 -40.3 0 5 -40.4 0 5 -40.4 0 5 - 40.3 0 

of the hot wall. The effect is more pronounced for the 
smaller aspect ratio because the wall undergoes a 
greater vertical temperature difference per unit of 
length. Results are estimated to be accurate to about 
5% for Nr  = 0.5 and only about 1~ °" for Nr  = 2.0. /o 

The variation of the Nusselt number with the ratio 
of permeabilities, Rx-, is shown in Table 3. Since the 
modified Rayleigh number is held constant, the vari- 
able, RK, should be viewed as the variation of K~.. A 
typical value for RK is two, which produces a negligible 
effect on the overall heat transfer. As mentioned 
before, the fiber planes should be rotated into a 
position such that they are perpendicular to the bulk 
flow. 

Some typical temperature and velocity profiles for 
uniform wall injection as obtained by numerical calcu- 
lation are presented in Table 4 along with the values 
obtained from the asymptotic solution with injection. 
The excellent agreement lends credence to the validity 
of the asymptotic solution. The only cases considered 
in this work are for a positive horizontal wall injection 
velocity (on the hot wall) and a positive wall suction 
velocity (on the cold wall). The horizontal boundaries 
are always impermeable. 

Results will now be presented for a uniform injection 
velocity of U,,. 5 on the hot wall, and a constant 
suction velocity of 40 over one-eighth of the cold wall. 
The results are characterized by No, the grid point 
about which the suction velocity' is centered. A grid 
of 16 × 32 was employed, so the suction velocity covers 
four grid spaces. Figure 6 presents the variation of the 
Nusselt number with N~. When N~ is large, the forced 
flow tends to travel mainly with the natural flow, and 
when N, is small, it travels mainly against the natural 
flow. For  N,  > 8, the free and forced convection 
combine to increase the Nusselt number above the 
value obtained for uniform suction while for N~, < 8, 
the opposite effect is observed. A symmetrical effect is 
absent due to the slightly skewed nature of the flow 
because of the insulating horizontal boundaries. 

The effect of a uniform injection velocity' on the hot 
wall and a variable suction velocity on the cold wall 
will now be illustrated. The hot wall injection velocity 

6 . 0  

Nu 

i ~ I - - ]  
------L~=5, Uniform 

• Ow=40 , Discrete 

5 . 8  A = i o  

R a = l o o  l 

NT: O " "0  1 

5 . 6  

I 

5.4 - -  I 

5.2 

I 
50  I I I I 

0 8 16 24 32 40 
N9 

FIG. 6. Variation of the Nusselt number with the grid point 
about which the suction velocity is centered. 

in all cases is Uw = 5. The mass is removed from the 
cold wall over the top one-eighth, one-quarter and 
one-half of the cold boundary and the bottom one-half, 
one-quarter and one-eighth of the cold boundary, 
resulting in suction velocities of Uw = 40, 20, 10, 10. 
20 and 40, respectively. A grid of 16 x 32 was employed, 
so the mass is being removed from between the grid 
points 29-33, 25-33, 17-33, 1-17, l -9  and 1 5, 
respectively. The variation of the Nusselt number with 
the suction velocity is presented in Fig. 7. Two curves 
are presented: one is for the removal on the lower 
portion of the cold wall: the other is for the removal 
on the upper portion of the cold wall. The curve for 
removal on the upper portion tends to increase the 
heat transfer above the value for uniform suction on 
the cold wall, while removal on the lower portion tends 
to decrease it due to the fact that the forced convection 
enforces and suppresses, respectively, the free con- 
vection. 

To illustrate the effect of the interaction of the free 
and forced convection flow fields upon the total heat 
transfer, four cases are presented where the injection 
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is 1.46. Case 1I acts to directly oppose the free con- 
vection, resulting in a low Nusselt number. Case III 
acts to directly augment the free convection, resulting 
in an increased Nusselt number. Cases I and IV act 
somewhere in-between, with about an equal effect upon 
the heat transfer. In all cases, the wall injection and 
suction velocities correspond to Uw = 5. 

Nu 

\ 

~0 .... 0 ........ -0 

4.8 ~ Numerical Calculation 

• - e -  Upper Region 
- - 0 -  Lower Region 

A= I0 
4 . 4  Ro = I00 

N=O 
RK = I 

l~njecfion Velocity = 5, Uniform 

4.C I I I I 
o i 0 20 30 40  50 

uw 

FIG. 7. Variation of the Nusselt number with the cold-wall 
suction velocity for suction on the upper and lower portion 

of the cold wall. 

velocity through the hot wall is constant over one- 
eighth of the wall and zero over the rest of the wall, 
while the suction velocity through the cold wall is equal 
to the injection velocity and therefore possesses the 
same area of flow. In cases I and I1, the fluid is injected 
through the bottom one-eighth of the hot wall, while 
in cases I l l  and IV, it is injected through the top 
one-eighth of the hot wall. The fluid exits through the 
top one-eighth of the cold wall for cases I and III, and 
the bottom one-eighth for cases 11 and IV. A schematic 
diagram of the four cases is shown in Fig. 8. The 
Nusselt number when only free convection is present 

Case I 

Nu= 1.97 

J 

Uw= 5, Discrete 

A =10 

Ro = I 00  
NT= 0 
RK= I 

CaselT 

N u = l . 7 5  

CaseTff Case 1~ 

Nu ~.2.  = No = 1.98 

F=G. 8. Schematic representation of  the four cases with 
discrete mass injection. 

As was indicated before, free convection is not a 
strong mode of heat transfer. Any non-dimensional 
blowing velocities encountered in practice are likely to 
be huge, making this mode of heat transfer the domi- 
nant one. So, for three-dimensional enclosures, the heat 
transfer may be calculated, as a first approximation, 
as being due to the enthalpy change of the fluid being 
forced through the enclosure on a mass flow basis. If 
free convection is significant, it can be estimated and 
added to the forced convection and conduction. 

CONCL['SIONS 

In order to understand the heat-transfer process in 
common building walls,  convective heat transfer 
through porous insulation in a vertical slot has been 
analytically examined. The results demonstrate the 
dependence of the Nusselt number on the Rayleigh 
number, aspect ratio, and anisotropic permeabilities. 
A simple, analytical formula for calculating the heat 
transfer has been developed after obtaining a matching 
coefficient by comparison with numerical solutions. 
The inadvisability of unfavorable boundary tempera- 
ture gradients has been brought to light. Wall leakage, 
as simulated by mass injection and suction, has been 
shown to exert an imposing effect upon the heat 
transfer. Care must be taken to eliminate wall leakage 
in an area where the free convection would be en- 
hanced. The fiber planes should be rotated so as to 
introduce the most flow resistance in the direction 
coincident with the bulk of the flow. Insulation should, 
perhaps, be self-contained in its own enclosure (i.e. a 
plastic wrap), as was done by Lopez [3], with at least 
one radiation shield. This would eliminate the problem 
of wall leakage and also allow the insulation to be 
arranged with the fiber planes oriented to oppose the 
bulk flow, with no opposing influence of cross flow. 

Acknowledgement--This research was supported through a 
Grant on "Research on Building Insulation" by the Center 
for Building Technology, National Bureau of Standards 
(NBS). Many discussions with Dr. T. Kusuda of the NBS 
have been most helpful to the present work. 

REFERENCES 

1. J. D. Verschoor and P. GreeNer, Heat transfer by gas 
conduction and radiation in fibrous insulation, Trans. 
Am. Soc. Mech. Engrs 74, 962 (1952). 

2..1. R. Mumaw, Variations of the thermal conductivity 
coefficient for fibrous insulation materials, M.S. Thesis, 
The Ohio State University (1968). 

3. E. L. Lopez, Techniques for improving the thermal 
performance of low-density fibrous insulation, Pro 9. 
Aeronaut. Astronaut. 23, 153 (1969). 

4. C. G. Bankvall, Heat transfer in fibrous materials, J. 
Testin9 Eraluation 3, 235 (1973). 

5. D. Fournier and S. Klarsfeld, Some recent experimental 
data on glass fibre insulating materials and their use for 
a reliable design of insulations at low temperatures, 
ASTM STP 544, 223 (1974). 

H MT Vol. 20, No. 9--C 



926 P.J. BURNS;, L. C. CHow and C. L. TIEN 

6. P. H. Hoist and K. Aziz, A theoretical and experimental 
study of natural convection in a confined porous 
medium, Can. J. Chem. Enon,q 50, 232 (1972). 

7. C. G. Bankvall, Natural convective heat transfer in 
insulated structures, Lund Inst. of Tech. Report 38 
(1972). 

8. S. A. Bories and M. A. Combarnous, Natural convec- 
tion in a sloping porous layer, J. Fluid Mech. 57, 63 
(1973). 

9. T. Kaneko, M. F. Mohtadi and K. Aziz, An experi- 
mental study of natural convection in inclined porous 
media, Int. d. Heat Ma,~s Transfer 17, 485 (1974). 

10. B. K. C. Chan, C. M. lvey and J. M. Barry, Natural 

convection in enclosed porous media with rectangular 
boundaries, J. Heat Transfer 92, 21 (1970). 

l 1. J. E. Weber, Convection in a porous medium with hori- 
zontal and vertical temperature gradients, Int. J. Heat 
Mass Tranffer 17, 241 (1974). 

12. M. Muskat, The Flow of Homogeneous Fluids Throu~lh 
Porous Media. J. W. Edwards, Michigan (1946). 

13. G. K. Batchelor, Heat transfer by free convection across 
a closed cavity between vertical boundaries at different 
temperatures, Q. Jl Appl. Math. 12, 209 (1954). 

14. K. E. Torrance, Comparison of finite-difference compu- 
tations of natural convection, J. Res. Nam. Bar. Stand. 
B. Mathl Sci. 72B, 281 (1968). 

CONVECTION DANS UNE LAME REMPLIE PAR UN ISOLANT POREUX 

Resume--On 6tudie analytiquement le transfert thermique par convection dans une lame d'un isolant 
poreux. On donne une formule simple de calcul du transfert thermique apr~s avoir obtenu un 
coefficient d'adaptation par comparaison avec les solutions num6riques. On consid6re/t la fois les con- 
vections naturelle et forc~e dans des cas qui simulent les structures usuelles des batiments. On montre 
que pour des fuites de paroi appr6dables, le mode dominant du transfert thermique est dfi au changement 

d'enthalpie du fluide transf6rd Iorsqu'il est souffl6 ~ travers l'ouverture. 

KONVEKTION IN EINEM VERTIKALEN, MIT POROSER ISOL1ERUNG 
GEFI~ILLTEN SPALT 

Zusammenfassung--Der konvektive W~irmciibergang in einem vcrtikalcn, mit por6ser Isolierung geffillten 
Spalt wird analytisch untcrsucht. Es wird eine einfache analytische Beziehung zur Berechnung des 
Wiirmeiibergangs angegeben; die Anpassung an die numerische L6gung erfolgt mit Hilfe eines 
Koeffizienten. Es werden sowohl freie wie erzwungene Konvektion, welche die Wandleckagen in iiblichen 
Baustrukturen simulieren, in Betracht gezogen. Numerische Ergebnisse f'tir den Fall ohne Wandleckage 
sind in guter {)bereinstimmung mit vorhandenen Resultaten. Es wird gezeigt, dab bei merklichen 
Wandleckagen der W~irmeiibergang vor allem durch die Enthalpieiinderung des durchstr6menden Fluids 

bestimmt wird. 

KOHBEKI~H,q B BEPTHKA2IbHO17I IIIF_JIH, 3AHO.HHEHHOIT'I HOPHCTbIM 
H3OJI~IUHOHHbIM MATEPHA3"IOM 

AIIEOTa[I~H- AHaJIHTHqeCKH HCC.rleLlyeTOt KOHBCKTI,1BHMITI IlepeHoc TeILlla qepc3 nopHCTbll~ H30- 
H,qlI~HOHHbII~ MaTepHan B BepTHKaJIbHOI~ LL~eJIH. Ha OCHOBe qHCJ'IeHHhIX pemeaHi~i BblBCjIeHa npocTas 
3iI'IHpHqeCKa~I OopMyJIa lLrl~i pactieTa npouecca HCpCHOCa TenHa. PacCMaTpHBaIOTCn KaK CBO60~IHag, 
TaK g BbIHy)KJIeHHa~[ ]KOHB~KLIJA~I, Bbl3blBaI-onJ, l,I~ yTetlKy Tertna B CTeaaX c'rpoHTe3IlbFLI)lX KOHCTpyKUHi;i. 
LIHCJIeHHI=Ie peayRbTaTbl ,mini cByqasl OTCyTCTBHg yTeqKH TCnna xopomo COFHacy~0TCg c HMelOIII~- 
MHC~I ~IaHHblMH. l-Ioza3aHo, qTO npH 3HatiHTC/LbHOIII yTctmC npeo6J~a~aeT IlepCHoc Tenna 3a CqCT 
H3MCHeHHR 3HTaJIbIIHH IIepeHOCHMOI~ )KH]IKOCTH rio Mep¢ TOrO, zaz oHa ~po]lyBaeTC~ qepc3 nopHCTbli~ 

MaTcpnan. 


